Proton Grid Therapy: A Proof-of-Concept Study

نویسندگان

  • Thomas Henry
  • Ana Ureba
  • Alexander Valdman
  • Albert Siegbahn
چکیده

In this work, we studied the possibility of merging proton therapy with grid therapy. We hypothesized that patients with larger targets containing solid tumor growth could benefit from being treated with this method, proton grid therapy. We performed treatment planning for 2 patients with abdominal cancer with the suggested proton grid therapy technique. The proton beam arrays were cross-fired over the target volume. Circular or rectangular beam element shapes (building up the beam grids) were evaluated in the planning. An optimization was performed to calculate the fluence from each beam grid element. The optimization objectives were set to create a homogeneous dose inside the target volume with the constraint of maintaining the grid structure of the dose distribution in the surrounding tissue. The proton beam elements constituting the grid remained narrow and parallel down to large depths in the tissue. The calculation results showed that it is possible to produce target doses ranging between 100% and 130% of the prescribed dose by cross-firing beam grids, incident from 4 directions. A sensitivity test showed that a small rotation or translation of one of the used grids, due to setup errors, had only a limited influence on the dose distribution produced in the target, if 4 beam arrays were used for the irradiation. Proton grid therapy is technically feasible at proton therapy centers equipped with spot scanning systems using existing tools. By cross-firing the proton beam grids, a low tissue dose in between the paths of the elemental beams can be maintained down to the vicinity of a deep-seated target. With proton grid therapy, it is possible to produce a dose distribution inside the target volume of similar uniformity as can be created with current clinical methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the effective dose during PBFT for brain cancer: A Monte Carlo Study

Introduction: Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed. Three alpha particles with an average energy around 4MeV are emitted from the point of reaction between a proton and boron. In addition, the 719 keV prompt gamma emitted by the proton Boron fusion reactions can be used for on-...

متن کامل

Proton Therapy of eye using MCNPX code

Introduction: Proton radiotherapy is the one of advanced teletherapy methods. The protons deposit their maximum energy in a position called Bragg peak. Therefore, for treatment of cancer, the tumor should be placed at the Bragg peak or SOBP. The scattered photons and neutrons is a challenge in proton radiotherapy. The aim of this study is calculation of absorbed dose from scatt...

متن کامل

Calculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code

Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver.   Materials and Methods: For si...

متن کامل

Monte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy

Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therap...

متن کامل

Investigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study

Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016